THE IMPACT OF Li₂CO₃ AND SOME OTHER ACCELERATORS ON THE CAC HYDRATION

Joachim Angelkort*,1, Michel Cichocki, Storm Higgins, Natalie Fröse

¹Intocast AG, Westpreußenstraße 30, 47809 Krefeld, Germany email to: joachim.angelkort@intocast.de

Abstract

The setting of cement pastes containing calcium aluminate cements (CACs) can be accelerated by additions of selected alkali metal or alkaline earth metal compounds. In this work, the accelerating effects of Li₂CO₃, MgCO₃ and a sodium alginate are studied on basis of quantity-dependent changes in the phase assemblage of hydrated CAC samples (water cement ratio w/c = 1). The samples were hydrated for 24 hours and then used to measure X-ray diffraction data. In quantitative phase analyses, employing the measured data, the sample compositions were determined.

Generally, the first hydrate phases which crystallize during the CAC hydration room-temperature at are C_2AH_8 (2CaO·Al₂O₃·8H₂O), CAH₁₀ (CaO·Al₂O₃·10H₂O) and AH₃ (Al(OH)₃). In samples whose dry mixtures possess a Li₂CO₃ content of 0.0 to 0.03 wt%, all three hydrate phases crystalize during the initial hydration. The CAH₁₀ content in these samples, however, decreases drastically with increasing Li₂CO₃ addition. In samples with a Li₂CO₃ content of 0.04 wt% or higher, the CAH₁₀ phase is absent. The phase amounts of C₂AH₈, AH₃, C₃AH₆ and a Li₂CO₃-containing layered double hydroxide (LDH) also depend on the added amount of Li₂CO₃. While CAC samples containing ~0.1 wt% Li₂CO₃ develop particularly high amounts of C₂AH₈ during hydration, a further increase of the Li₂CO₃ amount is associated with a decrease in the C₂AH₈ amount and an increase in the C₃AH₆ amount. The inversely correlated formation of C_2AH_8 and C_3AH_6 seems to result from a transition of C2AH8 into C3AH6.

Compared to additions of Li₂CO₃, additions of MgCO₃ or sodium alginate induce much smaller changes in the phase composition of the hydrating CAC and are not associated with a suppression of the CAH₁₀ formation.

Introduction

Although Li₂CO₃ and other lithium-containing salts are widely used to shorten the hardening time of cement pastes, the origin of the accelerating effect caused by these compounds is still unclear. Possibly, the accelerating effect is partly driven by an initial formation of a layered double hydroxide (LDH) [1, 2]. However, evidence for the influence of the LDH phase on the formation of typical hydrate phases, like AH₃, C₂AH₈, CAH₁₀ and C₃AH₆, is still lacking.

Apart from lithium-containing salts, also other metal salts can react with aluminum hydroxide to form LDH compounds [3-6]. However, none of these compounds are known to possess a similar strong influence on the hydration process of CACs as the Licontaining compounds. The involvement of the LDH phase in the CAC hydration still needs closer examination to understand the function of the LDH phase in the hydration process. Interestingly, C₂AH₈ itself represents a LDH phase [7]. In hydrated samples of Li₂CO₃-containing CACs, the C₂AH₈ formation is often favored over the formation of the CAH₁₀ phase, leading frequently even to a complete absence of the CAH₁₀ phase in the hydrated CAC [1, 2]. As the crystal structure of C_2AH_8 can be formally derived from the Li–Al–CO₃ LDH phase by ion exchange reactions, the rather sluggish reconstructive formation of CAH₁₀ is possibly kinetically outperformed by a faster formation of C_2AH_8 .

Although the C_2AH_8 formation might be activated by the LDH phase, several other factors, especially the pH value and the concentrations of Al(OH)4⁻ and Ca²⁺ ions, influence the CAC hydration as well [1]. Recently, it was revealed that the setting process of CACs can also be accelerated by additions of sodium alginate [8], a product derived from natural algae. In the dissolved alginate, long molecular chains of polysaccharides can bind Ca²⁺ ions in chelate complexes. This entrapment seems to be the key feature by which the alginate influences the CAC hydration [8].

Experimental

Materials

For the hydration experiments a commercially available cement was used containing the cementitious phases CA (~ 94.5 wt%), CA₂ (~ 3.5 wt%) and C₁₂A₇ (~ 2 wt%). Lithium carbonate (Li₂CO₃, 99 wt%, Merck), magnesium hydroxycarbonate (MgCO₃·xH₂O, 99 wt%, Merck), in this work abbreviated by MgCO₃, as well as sodium alginate (Vivapur, J. Rettenmaier und Söhne) were added in the CAC in amounts up to 1.0 wt% to investigate the influence of these additions on the CAC hydration.

Ultrasonic measurements

The setting of hydrated CAC samples was probed by measuring the time needed by ultrasonic signals to travel through the sample using an ultrasonic device of UltraTest (Ultrasonic – Tester BP7). Transmitter and receiver sensors were placed in each measurement 30 mm apart from each other to allow for a better comparability of the measurements. The samples were prepared by mixing 50 g of each dry mixture (containing the CAC and the accelerator) or the pure CAC with 50 g demineralized water in a closed vessel.

Hydration experiments, samples for XRD measurements

Samples were prepared by mixing 10 g of the pure CAC or 10 g of a dry mixture with the same amount of demineralized water in sealable, air-tight plastic bags. The dry mixtures were prepared beforehand by mixing the CAC with small amounts of the accelerators (0.0 - 1.0 wt%). After storing for 24 hours at room-temperature in an air-conditioned room, the hydrated samples were ground in a mortar and used to measure XRD patterns.

XRD measurements, phase analysis

Powder diffraction patterns of the hydrated CACs were measured in a 2 θ range from 4 to 70 deg. using an X'Pert³ diffractometer (PANalytical) equipped with a CuK α 1 tube. Measurements were carried out in reflection mode (Bragg-Brentano geometry) with a measuring time of 17 minutes for each pattern. Peaks in the diffraction patterns were identified as reflections of the cementitious phases CA and CA₂ and of hydrate phases formed by the reaction of the CAC with water. Quantitative phase analyses were conducted by employing the computer program Jana2006 [9] using crystal structure data found in the data base COD (Crystallographic Open Database) [10] and in the literature [11, 12] (Tab. 1).

Tab. 1: Phases considered in the phase analysis. ID numbers refer to data base entries in the COD [10].

Phase		ID number
CA		4308075
CA_2		9014425
CAH ₁₀		2103045
C_3AH_6		9001085
AH ₃		9008237
C ₂ AH ₈		3500118
Li–Al–CO ₃ LDH	reference [11]	-
Mg–Al–CO ₃ LDH	reference [12]	-

Influence of Li₂CO₃ additions on the properties of a CACcontaining mass and of sample bars produced from the mass

The effect of small additions of Li₂CO₃ on the flowability of a CAC-containing castable was investigated in flow tests conducted with a tabular alumina-based mass. The dry mixture of the mass was composed of 90 wt% tabular alumina, comprising different grain size ranges (Tab. 2), 10 wt% CAC and small additions of Li₂CO₃ (0-0.04 wt% with respect to the amount of the CAC in the dry mixture; 0-0.004 wt% with respect to the total weight of the dry mixture, Tab. 2). For the preparation of the mass, 2 kg dry mixture was mixed with 200 g water and stirred for 2 minutes at 140 rpm in a mortar mixer. The mass was used to determine the flowability in a flow test and to produce sample bars, whose material strengths were probed after a curing time of 24 hours.

Tab. 2: Composition of dry mixtures used to prepare tabular alumina masses containing small amounts of Li₂CO₃.

raw materials	wt%
Al-Tab, 1-3 mm	30
Al-Tab, 0.5-1 mm	20
Al-Tab, 0.2-0.6 mm	20
Al-Tab, 0-0.2 mm	20
CAC	10
Li ₂ CO ₃	<0.004

Results and Discussion

Small additions of Li₂CO₃, MgCO₃ or sodium alginate in a CAC cause the setting of the cement paste to occur remarkably earlier than the setting of the hydrated sample prepared from the pure CAC (Fig. 1). While the addition of MgCO₃ or alginate results in a shortening of the induction period by about 4-7 hours, the addition of Li₂CO₃ shortens the induction period by ~12 hours.

Additions of Li₂CO₃ strongly influence the phase formation in a CAC during a hydration of 24 hours (Fig. 2, Tab. 3). For an addition of Li₂CO₃ in amounts up to 0.03 wt%, the CAH₁₀ content in the hydrated CAC declines drastically. An addition of 0.04 wt% Li₂CO₃ or more precludes the CAH₁₀ formation by favoring the crystallization of the hydrate phases C₂AH₈ and AH₃. The hydration of samples possessing a Li₂CO₃ content of 0.1 wt% or higher results in the formation of the C₃AH₆ phase, whose phase amounts increase with the amount of added Li₂CO₃ (Fig.2 und Tab. 3). In parallel, the increase of the C₃AH₆ amount is associated with a decrease of the phase amount of C₂AH₈. This inverse correlation

of the two phase amounts might be interpreted by a development of the C_3AH_6 phase from the C_2AH_8 phase as it is described in reference [13] for CAC samples hydrated at 60°C. Another inverse correlation, comparatively less pronounced, pertains the formation of the phases AH₃ and LDH. Here, increasing Li₂CO₃ additions lead presumably to increasing amounts of LDH, decreasing concomitantly the remaining amount of AH₃.

Fig. 1: Velocity of ultrasonic signals measured during hydration of different CAC samples. Colors refer to accelerators mixed in the samples.

Fig. 2: Amounts of hydrate phases formed by hydration of mixtures of a CAC with different amounts of Li₂CO₃. Phase amounts refer to the phase composition determined after a sample hydration for 24 h (Tab. 3). Coloured lines are guides to the eye.

Tab. 3: Phase compositions of hydrated CAC samples given for different amounts of Li_2CO_3 mixed into the samples before hydration. The compositions were determined after a sample hydration of 24 h. Values in wt%.

added Li ₂ CO ₃	Phase composition						
(wt%)	CA	CA ₂	CAH ₁₀	C ₂ AH ₈	C3AH6	AH ₃	LDH
0.00	17.9	2.1	60.0	6.2	0.0	13.2	0.0
0.01	17.4	3.5	43.7	10.0	0.0	20.5	4.8
0.02	17.4	5.3	28.3	18.0	0.0	30.3	5.7
0.03	30.6	3.6	9.1	17.1	0.0	34.2	5.3
0.04	23.5	3.8	0.0	24.2	0.0	41.2	7.4
0.05	20.5	7.2	0.0	24.4	0.0	41.9	5.4
0.10	23.7	3.3	0.0	19.6	1.7	43.7	8.0
0.15	9.4	1.9	0.0	12.4	19.6	46.7	10.0
0.20	14.1	2.7	0.0	11.6	23.9	38.7	8.9
0.25	3.9	1.6	0.0	9.0	31.4	43.9	10.2
0.30	10.3	1.6	0.0	8.8	24.8	40.7	14.0
0.40	8.0	1.8	0.0	4.8	32.8	41.2	11.3
0.50	6.6	1.4	0.0	8.2	31.1	44.7	9.5
0.60	3.5	1.2	0.0	3.1	41.0	40.8	10.5
0.70	2.5	1.2	0.0	1.2	45.5	37.1	12.6
0.80	2.9	0.7	0.0	0.3	52.8	33.1	10.2
0.90	2.4	0.7	0.0	0.9	45.9	37.6	12.4
1.00	2.1	0.6	0.0	1.4	46.4	34.8	14.8

The amount of unreacted CA phase increases for the addition of small amounts of Li₂CO₃ (< 0.1 wt%) and decreases for additions of Li₂CO₃ larger 0.1 wt%, following a similar trend as the C₂AH₈ formation (Tab. 3). Possibly, the presence of the C₂AH₈ phase might influence the amount of CA phase remaining in the hydrated sample, e.g. by an encapsulation of CAC grains.

As C_2AH_8 is one of the first phases crystallizing, it should also influence the initial strength formation in the sample. However, CAC samples containing 0.1 wt% Li₂CO₃ set already ~1 hour after mixing with water (Fig. 1). At that time, only small amounts of the crystalline hydrate phases C₂AH₈ and AH₃ reside relatively large amounts of the CA phase, indicating the initial hardening of the sample to be more influenced by a binding of the CA grains through an amorphous phase.

Compared to Li₂CO₃ additions, MgCO₃ or alginate show lower effects on the formation of the hydrate phases in hydrating CAC. Although increases in MgCO₃ additions result in small decreases of the CAH₁₀ content of the CAC after a hydration of 24 hours, the CAH₁₀ phase is with a phase amount of ~60 wt% the dominating hydrate phase in the sample. An increase of the added amount of MgCO₃ leads to small increases in the phase amounts of the LDH phase, but a less clear trend for the changes in the phase content of C₂AH₈ and AH₃ (Fig. 3, Tab. 4). As the amounts of C₃AH₆ are quite low in the hydrated samples with high CAH₁₀ contents, it seems that C₃AH₆ just develops from the C₂AH₈ phase and not from CAH₁₀, corroborating the results of Hueller et al. [13].

Fig. 3: Amounts of hydrate phases formed by hydration of mixtures of a CAC with different amounts of MgCO₃. Phase amounts refer to the phase composition determined after a sample hydration of 24 h (Tab. 4). Coloured lines are guides to the eye.

Tab. 4: Phase compositions of CAC samples given for different amounts of $MgCO_3$ added to the samples before hydration. The compositions were determined for a sample hydration over 24 h. Values in wt%.

added MgCO ₃	phase composition						
(wt%)	CA	\mathbf{CA}_{2}	CAH ₁₀	C ₂ AH ₈	C ₃ AH ₆	AH ₃	LDH
0.00	17.9	2.1	60.0	6.2	0.0	13.2	0.0
0.10	14.8	2.9	57.3	4.9	0.0	14.4	5.9
0.30	16.3	1.6	60.6	3.9	0.1	12.8	4.5
0.50	17.1	1.7	52.8	3.2	0.0	18.1	7.2
0.70	10.2	3.1	55.8	5.4	1.6	17.7	6.8
0.90	10.5	1.8	54.3	5.0	1.7	17.8	9.6
1.00	11.0	0.1	51.9	5.0	0.6	17.4	14.1

Tab. 5: Phase compositions of CAC samples given for different amounts of alginate added in the samples before hydration. The compositions were determined after a sample hydration of 24 h. Values in wt%.

added alginate	phase composition						
(wt%)	CA	CA ₂	CAH ₁₀	C ₂ AH ₈	C ₃ AH ₆	AH ₃	
0.00	17.9	2.1	60.0	6.2	0.0	13.2	
0.10	14.8	4.8	61.5	4.7	1.5	12.6	
0.50	11.8	3.7	51.1	10.8	2.5	20.0	
1.00	15.8	2.4	52.0	12.4	2.6	14.8	

Effect of Li₂CO₃ additions on the flowability of a CAC-containing mass and the influence on the green strengths

By increasing the Li₂CO₃ content in a CAC-containing tabular alumina-based mass, the flowability strongly decreases (Tab. 6). The amount of added Li₂CO₃ also influences the materials strengths of sample bars produced from the mass. In accordance with findings of Matusinović et al. [2], higher Li₂CO₃ contents in CAC samples affect lower material strengths (Tab. 6).

As Li₂CO₃ additions induce large changes in the phase composition of hydrating CAC samples (Tab. 3, Fig 2), they can affect crucial changes in the microstructure and influence the green strength of the samples. The comparatively high green strength of samples containing large amounts of the CAH₁₀ phase can be attributed to a crystallization of the phase in a bulky mass. Crystals of C₂AH₈, in contrast, grow to rather thin platelets accounting for a higher brittleness of the hydrated CAC.

Tab. 6: Influence of the Li_2CO_3 content on the flow of a tabular alumina mass (Tab. 2) and the cold modulus of rupture (CMOR) as well as cold crushing strength (CCS) of sample bars produced from the mass.

Li ₂ CO ₃ addition (wt%)	flow	flow CMOR (MPa)	
0.00	142%	5.25	35.6
0.01	133%	4.84	29.3
0.02	127%	5.24	25.1
0.03	78%	5.17	21.5
0.04	55%	3.85	13.0

Conclusions

Small additions of Li_2CO_3 strongly influence the phase formation during the CAC hydration. By the addition of MgCO₃ or sodium alginate, which can also accelerate the setting of CACs, comparatively smaller changes in the phase assemblage is provoked.

Samples mixed with different amounts of Li₂CO₃ and hydrated according to a water to cement ratio w/c = 1 formed CAH₁₀ only when Li₂CO₃ was added in amounts below 0.04 wt%. In these samples, the CAH₁₀ amount was found to decrease drastically with increasing amount of added Li₂CO₃. By hydration of CAC samples containing Li₂CO₃ in an amount of 0.04 wt% or higher, the phases C₂AH₈, AH₃, C₃AH₆ as well as a LDH phase formed, however, no CAH₁₀.

While CAC samples mixed with ~0.1 wt% Li₂CO₃ develop particularly high amounts of C₂AH₈ during the hydration, higher Li₂CO₃ additions result in a decrease of the C₂AH₈ amount and an increase of the C₃AH₆ amount. The inverse correlation of these phase amounts can be interpreted by a transition of C₂AH₈ into C₃AH₆, which seems to depend on the amount of added Li₂CO₃.

In some further tests, the influence of Li₂CO₃ on the flowability of a CAC-containing tabular alumina mass was probed. It was found that the flowability decreases significantly if small amounts of Li₂CO₃ were added in the dry mixture of the mass. The green strength of sample bars produced from the mass also decreases through an increase of the Li₂CO₃ amount.

REFERENCES

- [1] Manninger T, Jansen D, Neubauer J, Goetz-Neunhoeffer F. Accelerating effect of Li₂CO₃ on formation of monocarbonate and Al-hydroxide in a CA-cement and calcite mix during early hydration. Cem. Concr. Res. 2019; 126: 105897.
- [2] Matusinović T, Vrbos N, Čurlin D. Lithium salts in rapid setting high-alumina cement materials. 1994; 33: 2795-2800.
- [3] Williams GR, Moorhouse SJ, Prior TJ, Fogg AM, Rees NH, O'Hare D. New insights into the intercalation chemistry of Al(OH)₃. Dalton Trans. 2011; 40: 6012-6022.
- [4] Rees JR, Burden CS, Fogg AM. New layered double hydroxides prepared by the intercalation of gibbsite. J. Solid State Chem. 2015; 224: 36-39.
- [5] Fogg AM, Williams GR, Chester R, O'Hare D. A novel family of layered double hydroxides – [MAl4(OH)12](NO3)·xH2O (M= Co, Ni, Cu, Zn). J. Mater. Chem. 2004; 14: 2369-2371.
- [6] Angelkort J, Reichert A, Knoll M. Investigations on aluminum hydroxide and intercalation compounds. Proceedings of the 61st International Colloquium on Refractories, 26th and 27th September 2018, Aachen, Germany.
- [7] Ukrainczyk N, Matusinovic T, Kurajica S, Zimmermann B, Sipusic J. Dehydration of a layered double hydroxide – C2AH8. Thermochim. Acta, 2007; 464: 7-15.

- [8] Engbert A, Gruber S, Plank J. The effect of alginates on the hydration of calcium aluminate cement. Carbohydr. Polym. 2020; 236: 116038.
- [9] Petříček V, Dušek M, Palatinus L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr. 2014; 229: 345-352.
- [10] Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya N R, Moeck P, Downs R T, LeBail A. Crystallography Open Database (COD): an openaccess collection of crystal structures and platform for worldwide collaboration. Nucleic Acids Research, 2012; 40: D420-D427.
- [11] Britto S, Kamath PV. Polytypism in the lithium-aluminum layered double hydroxides: The $[LiAl_2(OH)_6]^+$ layer as structural synthon. Inorg. Chem. 2011; 50: 5619-5627.
- [12] Zhitova ES, Krivovichev SV, Yakovenchuk VN, Ivanyuk GY, Pakhomovsky YA, Mikhailova JA. Crystal chemistry of natural layered double hydroxides: 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkaline-ultrabasic massif, Kola peninsula, Russia. Mineralogical Magazine 2018; 82(2): 329-346.
- [13] Hueller F, Neubauer J, Kasessner S, Goetz-Neunhoeffer F. Hydration of calcium aluminates at 60° C – Development paths of C₂AH_x in dependence on the content of free water. J. Am. Ceram. Soc. 2018; 102: 4376-4387.